В начало

Виды МикроЭВМ и МК (Тема)

 

Микроконтроллеры – управляющие устройства в микроисполнении – широко применяются в различных областях технической деятельности человека: в ПЭВМ, стиральных машинах, музыкальных центрах, автомобилях, средствах измерений, и т.д. Микроконтроллер является управляющим ядром аппаратных комплексов различного назначения. С его помощью гораздо легче, в отличие от традиционных решений, реализуются различные схемы. Можно представить внутреннее содержание микроконтроллера и его направленность на некоторые возможные объекты управления так, как это сделано на рисунке ниже.

 

Рис. Содержание и возможная направленность микроконтроллера

 

Достоинство микроконтроллера (МК) – это наличие на кристалле большого числа периферийных схем, что позволяет ему общаться с разнообразными внешними устройствам при минимуме дополнительных узлов. Это также уменьшает размеры конструкции и позволяет снизить потребление энергии от источника питания.

Из рисунка видно, что МК содержит типовые функциональные узлы. К ним относятся следующие.

1. Центральное процессорное устройство – оно принимает из памяти программ коды команд, декодирует их и исполняет. В него входят арифметико-логическое устройство (АЛУ), регистры и цепи управления.

2. Память программ – она хранит коды команд, последовательность которых формирует программу микроконтроллера.

3. Оперативная память данных (ОЗУ) – здесь хранятся переменные программ. У многих МК здесь также расположен стек.

4. Тактовый генератор – инициирует работу контроллера, и от него зависит скорость работы МК.

5. Цепь сброса – приводит МК в исходное состояние, чем определяет правильный запуск его работы.

6. Последовательный порт – позволяет обмениваться данными с внешними устройствами при малом числе проводов.

7. Цифровой порт ввода-вывода – с помощью его линий можно управлять одновременно несколькими внешними устройствами, адресуя их.

8. Таймер – задаёт временные интервалы.

9. Сторожевой таймер – специальный таймер, предназначенный для предотвращения системных сбоев программы: после запуска он начинает отсчёт заданного временного интервала. Если программа не перезапустит его до истечения этого интервала времени, сторожевой таймер перезапустит МК. То есть программа должна сигнализировать таймеру, что с ней всё в порядке. Если такого сигнала нет, то в работе программы по какой-то причине произошёл сбой.

Наиболее распространён ОмК ф. Intel 51-й серии и его клоны от разных производителей. Кроме этого, появились интегральные схемы, использующие сокращённый набор команд процессора (RISKReduced Instruction Set Computers). Среди них популярны контроллеры ф. Microchip семейства PIC (Peripheral Interface Controller). Также лидирующее место занимают RISK ОмК из серии AVR (например, ф. Аtmel). PIC-контроллеры выпускают многие фирмы, кому не лень их делать.

PIC-контроллер имеет также RISK-процессор, только архитектура процессора другая и кодовое слово не 8 бит, а 11–15 бит.

Основное отличие RISK-процессора от 51-й серии ф. Intel, например, то, что команда в нём исполняется за один такт, и число команд ограничено – обычно около 60–70 штук. Поэтому в ходе изучения нужно рассматривать оба типа микроконтроллеров. Как обычный ОмК нужно рассмотреть контроллер 51-й серии (и как самый используемый тип контроллеров). А в качестве RISK-контроллера необходимо рассмотреть PIC-контроллеры и контроллер AVR ф. Аtmel, так как для него много всевозможного бесплатного обеспечения, используемого для программирования и демонстрации.

Впрочем, нет принципиальной разницы, на каком оборудовании изучаются ОмК, так как сейчас все они часто программируется на языке С. Но ресурсы в разных процессорах разные и, в зависимости от модели, что-то может присутствовать, а что-то может быть упущено. После контроллера 51-й серии целесообразно рассматривать AVR-контроллеры, а затем идут atmega и arm как дальнейшее развитие. Достаточно рассмотреть и изучить один процессор – и полученные знания легко распространяются на все остальное. Новые ресурсы и возможности появляются, а принципы остаются всё те же (кроме PIC-контроллеров).

Семейство MCS-51, по сути дела, стало прародителем семейств так называемых PIC и AVR микроконтроллеров, выполненных по Гарвардской архитектуре процессора.

В случае высоких требований к быстродействию МК, при условии их низкой стоимости и энергопотребления, разработки на основе МК MCS-51 применяются реже, уступая место разработкам на PIC и AVR микроконтроллерах.

В целом, многообразие современных ОмК чрезвычайно велико. Зачастую их делят на виды:

– встраиваемые 8-разрядные;

– 16- и 32-разрядные МК;

– цифровые сигнальные процессоры (DSP).

Встраиваемые (embedded) микроконтроллеры имеют все ресурсы (память, устройства ввода-вывода, и т. д.) на одном кристалле с процессорным ядром. На такой контроллер подаются питание и тактовые сигналы. В них процессорное ядро может быть общего плана или разработано специально для данного МК. Основное назначение встраиваемых МК – обеспечить гибкое программируемое управление объектами и связь с внешними устройствами. Они не приспособлены для выполнения комплекса сложных функций.

Такие МК содержат большое число вспомогательных устройств, за счёт чего реализуется их включение в конкретную систему с использованием минимального числа дополнительных компонентов. Обобщённая структура такого контроллера приведена на рисунке далее.

 

 

Рис. Обобщённая структура простого встраиваемого микроконтроллера

 

В состав таких МК обычно входят схема начального запуска (Reset); генератор тактовых импульсов; центральный процессор; память программ (ПЗУ или ППЗУ, ЭППЗУ); память данных (ОЗУ); средства ввода-вывода данных; таймеры, фиксирующие число командных циклов.

Сложные встраиваемые МК реализуют дополнительные возможности: встроенный монитор-отладчик программ; внутренние средства программирования памяти программ; обработка прерываний от различных источников; аналоговый ввод-вывод; последовательный ввод-вывод (синхронный и асинхронный); параллельный ввод-вывод (включая интерфейс с компьютером); подключение внешней памяти (микропроцессорный режим).

Типичные значения частоты тактовых сигналов различных МК составляют 10–20 МГц. Главным фактором, ограничивающим их скорость, является время доступа к памяти.

Микроконтроллеры с внешней памятью (особенно 16- и 32-разрядные) используют только внешнюю память, которая включает в себя как память программ ПЗУ (ROM), так и некоторый объём памяти данных ОЗУ (RAM), требуемый для конкретного применения. Структура МК с внешней памятью приведена на рисунке 1.9.

Примером такого МК служит БИС ф. Intel 80188. Это микропроцессор 8088 (используемый в компьютерах IBM PC), интегрированный на общем кристалле с дополнительными схемами, реализующими ряд стандартных функций (прерывания и прямой доступ к памяти DMA). Здесь в одном корпусе объединены устройства, необходимые для реализации систем, в которых могут использоваться функциональные возможности и ПО микропроцессора 8088.

 

Интерфейс

с внешней

памятью

 

 

Рис. Обобщённая структура микроконтроллера с внешней памятью

 

Микроконтроллеры с внешней памятью предназначены для применений, требующих большого объёма памяти данных ОЗУ и небольшого количества устройств (портов) ввода-вывода. Для них наиболее подходят приложения, в которых критическим ресурсом является память, а не число логических входов–выходов общего назначения, тогда как для встраиваемых МК характерна обратная ситуация.

Типичный пример МК с внешней памятью – контроллер жёсткого диска (HDD) с буферной кэш-памятью, который обеспечивает промежуточное хранение и распределение больших объёмов данных (обычно, мегабайты). Внешняя память даёт возможность такому МК работать с более высокой скоростью, чем встраиваемый МК.

Цифровые сигнальные процессоры (DSP) предназначены для получения текущих данных от аналоговой системы и формирования соответствующего отклика. В них АЛУ работает с очень высокой скоростью, что позволяет осуществлять обработку данных в реальном масштабе времени (в темпе поступления входных данных). Пример – активный шумоподавляющий микрофон, когда второй микрофон обеспечивает сигнал окружающего шума, который вычитается из сигнала первого микрофона. Так подавляется шум и остаётся только голос.

Цифровым сигнальным процессорам присущи особенности встраиваемых МК и контроллеров с внешней памятью. Они не предназначены для автономного применения, а входят в состав систем и предназначены для управления внешним оборудованием. Например, наличие аналогового ввода–вывода и встроенного устройства цифровой обработки в БИС КМ1813ВЕ1 позволяет использовать её для построения фильтров (в том числе перестраиваемых), в синтезаторах и анализаторах речи, в анализаторах спектра, для генераторов сигналов различной формы и т. п.

Наиболее доведённой до практического применения являлась серия 1850. Ряд серий ОмЭВМ имеют БИС отладочного кристалла без встроенного ПЗУ и позволяют отрабатывать различные применения БИС данных серий за счёт замены или перепрограммирования внешнего ПЗУ (например, КМ1814ВЕ3, КР1816ВЕ35, КР1816ВЕ39 или КР1820ВЕ1). Наличие аналогового ввода-вывода и встроенного устройства цифровой обработки в БИС КМ1813ВЕ1 позволяет использовать её для построения фильтров (в том числе перестраиваемых), в синтезаторах и анализаторах речи, в анализаторах спектра, для генераторов сигналов различной формы и т. п.

 

Выводы

Основной причиной качественно нового этапа в развитии автономных средств вычислительной техники послужили успехи электронной промышленности в увеличении разрешающей способности формирования элементов на полупроводниковом кристалле. Целесообразность применения однокристальных МП-устройств определяется эффективностью при их включении в проект. Преимущество RISC-процессоров проявляется в том, что их более простые команды требуют для выполнения значительно меньшее число машинных циклов. За счёт этого достигается существенное увеличение производительности.

ОмЭВМ объединяет на одном полупроводниковом кристалле как сам МП, так и ряд дополнительных устройств, обеспечивающих его функционирование в системе управления: оперативную и программную память, генератор синхроимпульсов, разнообразные устройства ввода и вывода информации и др. ОмК – это устройства переработки информации, ориентированные на работу с некоторой искусственной системой. Большое число портов – их особенность. Микроконтроллер является управляющим ядром аппаратных комплексов различного назначения. С его помощью гораздо легче, в отличие от традиционных решений, реализуются различные схемы.

Основное преимущество Принстонской архитектуры в том, что она упрощает устройство микропроцессора, так как реализует обращение только к одной общей памяти при необходимости воспользоваться ЗУ данных, программ или стеком. Это представляет большую гибкость для разработчика ПО прежде всего в области операционных систем реального времени. Гарвардская архитектура выполняет команды за меньшее число тактов, чем предыдущая – здесь больше возможностей для реализации параллельных операций.

С целью уменьшения выводов БИС ОмЭВМ и ОмК при их построении применяют различные структурные организации. Многообразие современных ОмК чрезвычайно велико, и часто их делят на виды: встраиваемые 8-разрядные; 16- и 32-разрядные; цифровые сигнальные процессоры.

 

Шрифт ККМ ТВЕС-МИНИ
Шрифт ККМ ТВЕС-МИНИ


Tom Clancys Rainbow Six: Siege
Tom Clancys Rainbow Six: Siege


Шрифт ККМ ЛЕРУА МЕРЛЕН вариант 2
Шрифт ККМ ЛЕРУА МЕРЛЕН вариант 2